If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2=9x^2+49x+56
We move all terms to the left:
16x^2-(9x^2+49x+56)=0
We get rid of parentheses
16x^2-9x^2-49x-56=0
We add all the numbers together, and all the variables
7x^2-49x-56=0
a = 7; b = -49; c = -56;
Δ = b2-4ac
Δ = -492-4·7·(-56)
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-63}{2*7}=\frac{-14}{14} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+63}{2*7}=\frac{112}{14} =8 $
| -5(3x-4)-2=-3(5x+10)+21 | | -5(3x-4)-2=-3(5x+10+21 | | 4(3x-6)+12=-3(4-4x) | | a^2-14a=-100 | | 15/100=x/75 | | 0.25=0.75^(x) | | 31+49n=1-7n^2+8n | | 5(x-5)+6=x-(9-4x) | | 31+49n=1-7n^2-41n | | x(9)=7x+22 | | 2+5x-9=2x+3(x-7) | | 11y-12=11+8(y+3) | | 4+3/10x=13 | | 11z-9=1+7(z+3) | | 12x+6=2(5x+3) | | 2(-18+3y)-6y=6 | | (4x+2x)*4x=(3+5)*3 | | 16d=2,865 | | 5b-10=8+8(b+8) | | 5x−2=4x+2 | | 2(c+10)+12=4c-3 | | 15x-12+5×-18=90 | | 15x-12+5×-18=180 | | 8(y+5)+2=8y-10 | | 2k-7=1+5(k=11) | | 2k-7=1+5(k=11 | | A-7=5+5(a+5) | | -1+13n=-2n^2+6n-7 | | 1/3(6x-12)+3x=46 | | 5(k+3)+10=12k-8 | | 3x-2+5x-3=-53 | | 14+5x-3=3x+2+2x |